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9.1  �Premise: “Understanding” Transcription
The aim of the studies described in this chapter is to better understand pro-
karyotic transcription as it occurs in vivo. By “understand”, what we typically 
mean is, form a satisfying narrative for an observed phenomenon. As reduc-
tionist scientists, this narrative typically consists of describing (or more 
strictly, predicting) complex observables in terms of simpler components 
and interactions. As physicists, we add the requirement that the narrative is 
formulated mathematically rather than verbally, and is able to describe and 
predict quantitative, rather than qualitative, observables.
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197Using Single-cell RNA Measurements

Even within the parameters defined above, what constitutes a satisfying 
narrative depends entirely on a subjective, personal choice of the desired 
scale, resolution and precision of the sought-after description. One may set 
as the goal the ability to predict the identity (identified, e.g. by their 5′ and 3′ 
ends) and copy-number of all the different RNA molecules in a given cell, at 
any moment in time, given the a-priori knowledge of the genome sequence 
and the cellular concentration of all the relevant molecules—RNA poly-
merase (RNAP), transcription factors, nucleotides, etc. Once the infeasibility 
of this level of detail becomes obvious (or does it?), the narrative's requirements 
may be relaxed in different ways. For example, one may aim to predict only 
the population-averaged, rather than the single-cell, values; or the relative 
change in levels between two different conditions (e.g. temperature) rather 
than the absolute numbers under a given condition.

It must be said that, using these definitions, we cannot claim to “under-
stand transcription” in all but the coarsest resolution and precision. Not at 
all. At the same time, as in other areas of scientific investigation, the identi-
fication of scales at which we can and cannot provide a successful narrative 
helps us define the current limits to our knowledge, our rate of progress, and 
how far we still have to go. In this chapter, we attempt to do that. We report 
on some recent progress towards the formation of a quantitative narrative 
of transcription, and point to open questions, addressing which will lead to 
further refinements of this narrative.

9.2  �Single-cell Measurements of RNA Copy-number 
Can be Used to Learn About the Stochastic 
Kinetics of Transcription

The approaches for using fluorescence-based, single-cell RNA measurements 
to study transcription kinetics build on earlier studies that used analogous 
methods to analyze single-cell protein data in bacteria.1–3 The analysis com-
prises the following steps.4–6 First, the copy number of RNA from a gene of 
interest is measured in many individual cells, under well-defined growth 
conditions. In chemically fixed cells, this can be reliably done using single-
molecule fluorescence in situ hybridization (smFISH), in which a set of 
fluorescently-labeled oligonucleotides target the RNA of interest7,8 (Figure 9.1A). 
Under the microscope, the labeled RNAs will appear as fluorescent foci 
(“spots”). The total signal intensity of all spots in a given cell can then be 
measured and, properly calibrated, provides an estimate of the copy-number 
of the RNA of interest. The measured values from a few hundreds or thou-
sands of cells then yield the distribution of RNA copy-number within the 
population (Figure 9.1A).

The key to the investigative approach is the statistical concept of ergodic-
ity. Ergodicity posits an equivalence between the above “snapshot” of RNA 
numbers from a population of cells at a given instant, and the stochastic 
trajectory of an individual cell over time—namely the kinetics of RNA copy 
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Chapter 9198

numbers, which we are seeking. The deduction of these single-cell properties 
is performed by writing down a theoretical model for the proposed stochastic 
kinetics of RNA. This model is then solved to yield the predicted distribu-
tion of RNA copy number in a population of cells. Comparing this predic-
tion to the experimentally measured distribution allows testing the model's 
assumptions and estimating its kinetic parameters.

Figure 9.1  ��Probing the stochastic kinetics of transcription using single-cell RNA 
measurements. (A) The copy number of endogenous mRNA is mea-
sured in individual E. coli cells using single-molecule fluorescence  
in situ hybridization (smFISH). The resulting distribution is used to dis-
criminate between alternative models for mRNA kinetics. The Poisson  
model, corresponding to the observed population average of ≈ 13 lacZ 
mRNA per cell, does not account properly for the observed variation in  
copy-number between individual cells. In contrast, the two-state model, 
which includes state-switching in the transcriptional state of the gene, 
successfully captures the observed variability. (B) In live cells, transcrip-
tion is followed in real time via MS2–GFP labeling. The resulting time 
series shown below exhibits bursts of transcription, consistent with the 
broader-than-Poisson mRNA distribution found in (A). Panel B: Adapted 
from ref. 86 with permission from Taylor & Francis, Copyright 2012.
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199Using Single-cell RNA Measurements

In fact, the assumptions regarding RNA kinetics can also be tested more 
directly, by measuring these kinetics in individual live cells (Figure 9.1B). RNA 
detection and quantification in living cells is achieved using an RNA binding 
protein (most commonly, the phage MS2 coat protein), fused to a fluorescent 
protein. The RNA of interest is transcriptionally fused to multiple tandem 
copies of the coat protein's binding site. When the RNA is expressed, it serves 
as a target for the binding of multiple copies of a fluorescent form of the coat 
protein [e.g. MS2–green fluorescent protein (GFP)].9,10 The end result, as in 
the case of smFISH above, is the appearance of fluorescent “spots”, whose 
signal intensity can be quantified and converted to RNA copy-number.4 Per-
forming this measurement in a single cell over time provides the stochastic 
time series of RNA levels, and the characteristics of this time series can then 
be compared with the expectations from the proposed model.4

An early example of how the approach above can be used to illuminate 
transcription kinetics was the demonstration of transcription bursts in Esch-
erichia coli.4 The prevailing model prior to that study was that, for a fully 
induced (“constitutive”) promoter, RNA production can be approximated  
as a Poisson process, namely, molecules are produced one at a time, with a 
constant probability over time.2 Consequently, the RNA copy-number distri-
bution in a population of cells at a steady state level (i.e. when RNA produc-
tion and elimination are balanced) should follow the Poisson distribution. 
However, when the distribution was measured experimentally, it was found 
to be much broader than expected according to the model (Figure 9.1A). 
Other predictions of the Poisson assumption were also contradicted by the 
experimental data, for example, the fraction of cells having no RNA during 
the transition from promoter inactivity to full induction.4

Confronted with the failure of the Poisson hypothesis, Golding et al.4 then 
resorted to an alternative kinetic scheme known as the two-state (or “tele-
graph”) model. In this model, the promoter switches stochastically between 
two states. RNA production takes place, stochastically, only in one of these 
states (the “active state”), whereas the other promoter state is inactive. Promoter 
state transitions, RNA production in the active state, and RNA degradation, 
all have constant probabilities, i.e. are Poissonian. The two-state model, 
while being more elaborate, can still be solved to predict RNA copy-number 
statistics. Unlike the Poisson distribution, the predicted copy-number  
distribution from the two-state model is consistent with the experimen-
tally measured histograms (Figure 9.1A). The two-state model is also able to  
reliably predict how the fraction of zero-RNA cells will diminish during gene 
induction.4

In light of its success in reproducing the population statistics, the authors 
next attempted to test whether the two-state model is consistent with the 
RNA kinetics observed at the single-cell level. A key prediction of the model 
is that, when the promoter spends most of its time in the inactive state, RNA 
production will be “bursty”, characterized by short periods of activity where 
multiple RNAs are produced, interspersed by longer periods of inactivity. 
This prediction was borne out by following RNA production in individual 
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Chapter 9200

cells over time (Figure 9.1B). Moreover, the two-state model predicts that, 
in the bursty regime, the durations of active (RNA production) and inactive 
(no RNA production) periods will be exponentially distributed, reflecting the 
stochastic Poissonian switching between the active and inactive states. The 
experimentally measured durations were consistent with this prediction.4

In addition to providing strong evidence for the two-state hypothesis, 
the comparison of model predictions and experimental data yields an esti-
mation of the relevant physiological parameters. In the example above, the 
transcriptional burst size (i.e. the average number of RNA molecules pro-
duced during each active period) can be evaluated, not only from the single-
cell kinetics, but also from the RNA copy-number distribution. Specifically, 
it can be shown that the burst size is approximately equal to the ratio of 
population variance in RNA number per cell to the mean of this number, 
a ratio known as the “Fano factor” (note that measuring this ratio requires 
the ability to count the absolute number of molecules, rather than merely 
quantifying relative levels of expression4). In fact, measuring the RNA Fano 
factor has become the go-to method for estimating the transcription burst 
size. It was used, for example, to evaluate how burstiness varies when gene 
expression level changes, and to compare the burstiness of different pro-
moters.6,11 The effects of gene activity regulators (e.g. transcription factors12 
or DNA supercoiling13) on transcription kinetics could also be deciphered 
by examining the changes in RNA copy-number distributions. Similar anal-
yses have been successfully applied for the analysis of bursty transcription 
in eukaryotes as well.14–17

9.3  �Caveats
As with any method of scientific investigation, it is crucial to note the limita-
tions of the approach described above. These reflect what can be thought of 
(in analogy to quantum physics) as the “uncertainty principle of single-cell 
biology”, namely, the recognition that each measurement is also a perturbation 
to the system under study. This results in inherent, unavoidable limitations 
to the fidelity of the measurements performed.

In that context, we note that the MS2 method for live-cell RNA detection 
involves a significant modification of the endogenous system: The presence 
of an array of binding sites downstream of the promoter of interest, and the 
subsequent binding of MS2–GFP to the nascent RNA, are likely to perturb 
multiple aspects of the gene expression process, including transcription 
elongation, RNA translation, degradation, and spatial organization. Some 
of these expected perturbative effects have already been demonstrated, for 
example, the fact that RNA degradation in E. coli4 and yeast18 is inhibited by 
MS2–GFP binding. Furthermore, there are considerable limitations to the 
sensitivity, accuracy, and dynamic range of the MS2 method.4 Thus, while 
live-cell RNA measurements provide a vivid impression of “the thing itself” 
by allowing real-time characterization of RNA kinetics, they rarely reflect the 
dynamics of the endogenous system in a precise manner.
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201Using Single-cell RNA Measurements

As for measurements on fixed samples, these offer the advantage of being 
applied to the endogenous (genetically unmodified) system. In addition, 
smFISH typically provides better RNA counting performance than MS2.6,7 
This is due to the lower variability in the label-to-target stoichiometry,  
and the lower levels of background cellular fluorescence. Of course, it is not 
possible to track the temporal trajectory of individual cells which have been 
chemically fixed. Instead, as described above, kinetic information is deduced by 
examining “snapshots” of copy-number statistics under different conditions 
and comparing those snapshots to the prediction of a theoretical model for 
RNA kinetics. Our deduction in this case is thus only as good as the model we 
conceived of. Critically, the kinetic models used are rarely if ever unique, i.e., 
more than one model can fit the data equally well.19 In choosing among models, 
one typically applies Occam's razor and selects the simplest one, but it is 
doubtful whether this criterion, so powerful in physics, is foolproof when 
it comes to living systems.20 When modeling cell-to-cell variability, we also 
commonly attribute to stochasticity (randomness) features that may actu-
ally reflect deterministic differences between individual cells, e.g., cell cycle 
phase or gene copy number, resulting in mistaken conclusions regarding 
RNA kinetics.21 We will return to this point later.

It is also important to remember that the models used for analyzing 
single-cell data are typically phenomenological. In other words, they are 
constructed, “top-down”, to reproduce the experimental data, rather than 
“bottom-up”, beginning from our knowledge of microscopic interactions. 
Consequently, the level of detail in the model is not determined by the actual 
complexity of the biological system, or by how well we know the particulars of 
the system. Rather, model complexity reflects the quality of available exper-
imental data. Thus, for example, data describing single-molecule resolution 
counting of RNA in individual cells (using MS2 or smFISH) has been used to 
test and refine models that describe the discrete events of RNA production,4–6 
improving on earlier models that relied on relative measurements of protein 
fluorescence level.1,2 However, the above single-cell RNA measurements were 
still limited to a resolution of one whole RNA. The corresponding models, 
accordingly, were unable to describe the kinetics of RNA elongation and deg-
radation, which were approximated as instantaneous (occurring at infinite  
speed). Only further improvements in the resolution of RNA measurements, 
down to the sub-molecule level (partial transcripts), can allow for testable 
models that describe elongation and degradation kinetics. Such measure-
ments, and the corresponding models, are now emerging.22–26

9.4  �From Individual Cells to Individual Gene Copies
In addition to the general caveats discussed above, measurements that yield 
the total number of RNA copies in a single cell suffer specific limitations in 
terms of their ability to inform us about RNA kinetics. This is because whole-
cell RNA measurements are blind to multiple features of RNA life history. 
One such feature is the identity of the individual gene copy from which the 
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Chapter 9202

RNA is transcribed. In a population of exponentially growing bacteria, indi-
vidual cells will sample different cell-cycle phases, and thus exhibit a twofold 
range of gene copy numbers (between 1 and 2 during slow growth, but up 
to 8 or even 16 in fast growth medium27). Since whole-cell measurements 
yield no information on individual gene copies, the analysis of the resulting 
data relies on assumptions regarding the number of copies and the degree 
to which individual copies act independently or are, instead, correlated with 
each other.6,12,28

Whole-cell RNA measurements are also blind to the age of individual RNA 
molecules present in the cell. Note that a typical mRNA in E. coli spends a 
significant fraction of its minutes-long life still tethered to the template gene 
as an actively transcribed (nascent) message, before being released as a 
complete (mature) mRNA and degraded.22 Nascent and mature mRNAs are 
subject to different kinetics and spatiotemporal dynamics, but those differ-
ences are all hidden from whole-cell measurements that cannot distinguish 
the two mRNA species.

In light of these limitations of the current single-cell measurements, it 
should not surprise us that fundamental questions regarding the spatiotem-
poral dynamics of mRNA in E. coli are still unresolved. First, temporally, there 
is still no consensus as to what determines the stochastic kinetics of mRNA 
production from the promoter (i.e. the transcriptional time series), and, in par-
ticular, what is the mechanism leading to transcription bursts. The leading 
hypotheses are that bursts reflect transcription-factor binding and unbinding 
at the promoter,28 the coupling of transcription to DNA supercoiling,13 or an 
as-yet unknown genome-wide process leading to non-gene-specific (universal) 
relation between gene expression level and the observed burst size.6,29 Each of 
these theories can claim some support from whole-cell RNA data. Therefore, 
improved measurement capabilities may be required to resolve them.

As for the spatial dimension, there is likewise still a debate as to where in 
the cell mRNA spends the duration of its lifetime. The textbook picture is that, 
upon completion, each transcript is immediately released from the template 
gene to diffuse freely in the cytoplasm, where it soon gets degraded.30 How-
ever, single-cell experiments have provided conflicting evidence regarding 
the veracity of this picture, with results of one study indicating that mRNA 
never leaves the vicinity of the gene,31 while results of later studies revealed 
mRNA distributed across the cytoplasm.6,32 Messenger RNAs encoding inner-
membrane proteins exhibit a tendency to localize to the membrane, but 
there is no consensus regarding the mechanism by which this localization 
is achieved.32–34 Here, too, the current limitations on probing the life history 
of mRNA in a single cell stand in our way of resolving these disagreements.

9.5  �Detecting Active Transcription from a Single Gene
To probe the spatiotemporal life history of mRNA in E. coli and address 
the open questions above, one would need to go beyond merely labeling 
and counting all mRNA from a given gene in the cell. Instead, it would be 
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203Using Single-cell RNA Measurements

necessary to measure the transcriptional activity of each individual copy of 
the gene, in order to examine how this activity depends on factors such as 
the presence of other copies of the same gene and the progression of the cell 
cycle. One would likewise need to discriminate nascent from mature mRNA, 
in order to characterize their different kinetics and spatial preferences.

In eukaryotic cells, active gene copies have been successfully identified on 
the basis of the presence of a strong RNA signal in the nucleus, correspond-
ing to multiple nascent RNAs at the gene.15,35–38 The presence of intronic RNA 
was likewise used to distinguish actively transcribed (pre-spliced) RNA from 
the mature species, where only exonic sequences can be detected.39–41 How-
ever, the absence of a nucleus or introns prevents these methods from being 
directly applicable to bacteria.

As an alternative approach, inspired again by work in eukaryotes42 as well 
as by a previous study in bacteria,31 we decided to use the physical position of 
the gene locus as a fiducial marker for where active transcription takes place. 
We proposed the hypothesis that identifying and quantifying gene-proximal 
RNA would allow us to measure active transcription, whereas RNA further 
away would correspond to mature transcripts, which we would also measure 
in the same cell.43

We labeled the gene locus using the fluorescent repressor operator system 
(FROS) method,44 in which an array of binding sites (here, 140 copies of tetO), 
engineered next to the gene of interest, is detected through the binding of 
the cognate transcription factor, fused to a fluorescent protein [here, tetra-
cycline repressor–yellow fluorescent protein (TetR–YFP)] (Figure 9.2A). Other 
pairs of binding sites and proteins (lacO–LacI, parS–ParB) have been success-
fully used for the same purpose.45,46 Consistent with previous reports, we 
find that the labeling scheme allows us to reliably measure the copy-number 
of the gene of interest in individual cells. By sorting the cells according to 
their length, we can track the gene copy number through the progression of 
the cell cycle (Figure 9.2A). Furthermore, by measuring the signal intensity 
of individual fluorescent foci (spots), we can detect unseparated sister copies 
(Figure 9.2A), which appear soon after gene replication.44 This serves as a 
useful means of identifying the timing of gene replication, in both time-lapse 
movies of live cells (Figure 9.2B) and length-sorted fixed cells (see later).43

We next combined FROS gene tagging with the RNA labeling methods 
described above, namely MS2 in live cells and smFISH in fixed samples43  
(Figure 9.3). In the following paragraphs, we focus on our finding for the 
lactose promoter, Plac. We have obtained similar results for Plac and phage 
lambda PR and PRM. Applying the dual labeling approach to any promoter 
of interest is straightforward. In the analysis below, the live and fixed-cell 
methods for gene-plus-RNA detection are used to complement each other, as 
established previously for enumeration of RNA, to wit, precise measurements 
of an endogenous gene are made using smFISH, and interpreted using a the-
oretical model to yield kinetic schemes and parameter estimation. The live 
approach, less quantitative but more independent of model assumptions, is 
then used to validate the kinetic features inferred from fixed-cell data.
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Chapter 9204

Our first test of the gene-plus-RNA labeling system is to ask whether it 
allows us to identify actively transcribed mRNA and distinguish it from the 
mature population. An indication that this is indeed the case is provided 
by examining the distance between each lacZ mRNA spot and the gene that 
encodes this mRNA (Figure 9.3A). The distribution of these distances revealed 
two distinct mRNA populations, one close to the gene and the other one fur-
ther away. It is then plausible to propose that the gene-proximal population 
corresponds to nascent RNA, and this picture is supported by the following 
findings43 (Figure 9.3A): (1) Under conditions of high expression, the gene-
proximal signal is stronger than that from distal mRNA spots, consistent 
with the presence of multiple nascent mRNA molecules at the gene.47 These 
nascent molecules are expected to appear as a single, diffraction-limited flu-
orescent spot, due to the limits of optical resolution. Previous smFISH-only 
experiments had already identified these putative transcription sites on the 
basis of their signal intensity.7 The proximity of these strong RNA signals to 
the encoding gene, as seen here, solidifies this interpretation. (2) Two-color 
smFISH reveals that the gene-proximal mRNA is enriched for the 5′ region 
of the gene, as would be expected from the presence of partially transcribed 

Figure 9.2  ��Detecting an individual DNA locus and the event of gene replication.  
(A) The locus of interest is labeled using the fluorescent repressor oper-
ator system (FROS). Sorting cells by length yields the locus copy number 
during the phase of the cell cycle. Measuring the fluorescent intensity 
of individual FROS spots allows the identification of newly replicated 
loci. (B) In time-lapse movies, gene replication is identified on the basis 
of the doubling of spot intensity followed by the spatial separation of 
the two sister copies.43
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205Using Single-cell RNA Measurements

(incomplete) mRNA.47 (3) On the other hand, when transcription initiation 
is inhibited using rifampicin, the gene-proximal mRNA signal disappears 
within a few minutes, consistent with the completion and release of the tran-
scripts already initiated.22 (4) The gene-proximal population is depleted alto-
gether when the labeled locus and mRNA correspond to different genes.43

Figure 9.3  ��Detecting active transcription at a single gene copy. (A) Simultaneous 
labeling of endogenous mRNA and the gene that encodes it in fixed 
cells. The distribution of RNA-to-gene distances indicates the existence 
of gene-proximal and gene-distal mRNA populations. Bottom: Evidence 
supporting the identification of gene-proximal mRNA as actively tran-
scribed (nascent) molecules: the gene-proximal RNA signal is stronger, 
is enriched for the 5′ region of the gene, and is eliminated following 
rifampicin treatment. (B) Nascent (per gene copy) and total (per cell) 
mRNA are measured to yield the copy-number distributions, which are 
then compared with the prediction by a theoretical model for mRNA 
kinetics. (C) In live cells, the transcriptional state (ON/OFF) of each 
gene copy can be followed over time.43
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The evidence thus indicates that using an RNA-to-gene distance criterion 
allows us to classify mRNA molecules in the cell as nascent or mature. When 
applying this procedure, we computationally correct for the probability of 
random co-localization of gene and mRNA, which would lead to overcount-
ing of nascent mRNA.43 In fixed samples, we next quantify the nascent mRNA 
signal (following the same approach used for smFISH-only data7) to obtain 
the copy-number distribution across individual cells (Figure 9.3B). In live 
cells, we use the distance criterion to establish whether a given gene copy 
is transcriptionally active or not, and then follow the activity of individual 
genes over time (Figure 9.3C).

9.6  �Analyzing Nascent mRNA to Reveal the Kinetics 
of Initiation, Elongation, and Degradation

We next wish to leverage these measurement capabilities to evaluate physi-
ological parameters and test mechanistic hypotheses regarding some of the 
processes acting on mRNA. To do so, we again take our cue from physics 
and engineering, where a canonical way to probe the function of a system 
is to sharply perturb it from its steady state, and then follow the system's 
dynamics as it gradually approaches a new steady state (or returns to the 
pre-perturbation state).48 The ability to test assumptions about the function 
of the system under study comes about, again, by forming a mathematical 
abstraction of these assumptions and comparing model predictions with 
the experimentally measured behavior. Beyond its application in human-
made systems, the perturbative approach has also been successful in the 
interrogation of living ones, notably, characterizing chemotactic adaptation 
in E. coli.49,50

Here we perturb the cell by inducing (turning on) Plac using the gratu-
itous inducer isopropyl-β-d-thiogalactoside (IPTG), which drives unbinding 
of the Lac repressor.51 This procedure is commonly used to probe transcrip-
tion kinetics4,52 (the inverse scenario, turning the gene off, can also be used 
to obtain kinetic insights51). Plac induction using IPTG provides a gener-
ous dynamic range of more than 100-fold (from a mean expression level 
of less than 0.1 to more than 10 lacZ mRNA per cell) provided that cyclic 
adenosine monophosphate (cAMP) metabolism is genetically abrogated 
and cAMP receptor protein (CRP) is instead activated by providing cAMP 
exogenously.6,53

Figure 9.4A depicts the results of a typical induction experiment. At different 
times after adding IPTG, samples were taken and the cells fixed, labeled, and 
imaged. The analysis described earlier in this chapter was used to measure the 
amounts of nascent, mature, and total lacZ mRNA per cell, which were then 
population-averaged. Even before performing detailed analysis, a few features 
can be observed in the data. The amount of total lacZ mRNA per cell shows 
the expected continuous increase, eventually saturating (after a few mRNA 
lifetimes) at a steady-state level that reflects the balance of mRNA production 
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207Using Single-cell RNA Measurements

and degradation.4 Mature mRNA, in contrast, only appears after a delay, cor-
responding to the time it takes to complete and release the first lacZYA tran-
script. At that same moment, nascent lacZ mRNA reaches its steady-state level, 
reflecting the balance of transcription initiation and release.25

To render these interpretations more rigorous and to estimate the underlying 
kinetic parameters, we formulated a mathematical model for the transcription  

Figure 9.4  ��Analyzing nascent mRNA reveals the stochastic kinetics of transcript 
initiation, elongation, and degradation. (A) The levels of total, nascent, 
and mature lacZ mRNA following induction using IPTG, in cells grown 
in glucose. (B) A stochastic model for mRNA kinetics. The model is  
able to reproduce the experimental data in panel A. (C) The estimated 
mRNA elongation speed as a function of the transcription initiation 
rate (corresponding to different lacZ expression levels), for cells grown 
in glucose and glycerol.43
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process43 (Figure 9.4B). In the model, transcription initiation (at rate kINI) is 
followed by mRNA elongation at a constant speed vEL. Upon completion of 
the full transcript (of length L), nascent mRNA is released from the gene to 
become a mature one. Both nascent and mature mRNA are degraded, with 
degradation initiated at rate kD and proceeding, from the 5′ end of the gene, 
at a speed that is also equal to vEL.

22

Here again, as in previous efforts discussed above, the level of detail 
included in the model is dictated by the resolution of the experimental data. 
Thus, for example, the processes of elongation and degradation, which we 
modeled as instantaneous in earlier work,4–6 can now be considered more 
realistically thanks to the higher-resolution data. Our formalism, which 
explicitly describes each position (0–L) on the gene, follows the model used 
by Chen et al.22 to interpret RNA-Seq data, but extends the original model to 
differentiate between nascent and mature species,25 a distinction which the 
authors' experiments (and therefore, their model) did not allow. At the same 
time, the strong simplifying assumptions made in our model, for example, 
that the speeds of elongation and degradation are equal to each other and 
constant along the gene, also reflect the fact that our data is not sufficiently 
resolved to constrain more detailed assumptions.

Our model can be solved to obtain mathematical expressions for the 
population-averaged levels of nascent and mature mRNA (more specifically, 
the expected smFISH or MS2–GFP signals for each species) as a function of 
time after adding the inducer.43 As seen in Figure 9.4A, our model indeed cap-
tures the essential features of mRNA kinetics during Plac induction. Moreover, 
the resulting estimates for the rates of lacZ mRNA elongation (approximately 
42 nucleotides s−1) and degradation (approximately 0.008 s−1) are consistent 
with measurements using total mRNA only, and with values reported in the 
literature.6,22,32,54

Despite being highly simplified, our model, when applied to the experi-
mental data, illuminates a number of non-trivial biological features. First, 
by evaluating elongation speed at different induction levels, we found that 
this speed is correlated with the rate of transcription initiation (Figure 9.4C). 
This confirms a previous report, which attributed this correlation to RNAP–
ribosome interactions.54,55 Second, the assumptions made in the model  
(i.e. the existence of co-transcriptional degradation22 and the equality 
between rate of elongation and degradation22) are strengthened by the fail-
ure to fit our experimental data using alternative models that do not include 
these assumptions.43

9.7  �Evidence for Partial Retention of Mature mRNA 
at the Gene

We next performed similar measurements for cells grown in glycerol, a slow 
growth medium (Figure 9.5A). Surprisingly, we found that our model failed 
to predict the level of gene-proximal (presumably, nascent) lacZ mRNA, both 
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209Using Single-cell RNA Measurements

during Plac induction and at the steady-state level of expression. Specifi-
cally, the fraction of cellular mRNA that was localized to the encoding gene 
was higher than expected on the basis of the time it takes to complete one 
transcript. This observation was reminiscent of an earlier report of strong 
DNA–RNA colocalization at the lac locus under similar growth conditions.31 
In contrast to these results however, where the authors did not detect any 
non-gene-proximal mRNA, our data revealed both proximal and cytoplasmic 
populations, albeit not at the theoretically expected ratio.

To interpret these results, we added a feature to our theoretical model, 
where upon completion of transcript elongation a fraction of mature mRNAs 
remained in the vicinity of the gene rather than being released to diffuse in 
the cytoplasm. The hypothesis of mature mRNA retention is supported by 

Figure 9.5  ��Partial retention of mature mRNA at the gene. (A) The levels of total, 
nascent, and mature lacZ mRNA following induction using IPTG, in 
cells grown in glycerol. The experimental data is reproduced by a model 
that includes the retention of approximately 55% of mature lacZ mRNA 
in the vicinity of the gene. (B) The levels of total, nascent, and mature 
lacZ mRNA following the addition of rifampicin. The transient increase 
in cytoplasmic (released) mRNA indicates that the mature mRNA reten-
tion depends on active transcription.43
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a few pieces of data.43 First, the gene-proximal lacZ smFISH signal showed 
a lower 5′ : 3′ ratio than that expected for nascent mRNA, consistent with 
the presence of complete transcripts among the proximal mRNA. Second, 
we found that rapidly centrifuging the cells (4500 g for 5 min) restored the 
gene–proximal lacZ levels, and the 5′ : 3′ ratios, to the expected values for 
nascent (actively transcribed) mRNA, indicating that the mature popula-
tion retained near the gene is not physically tethered to the DNA, in con-
trast to the actively transcribed molecules.43 Solving the modified model 
yielded good agreement with the experimental data, during both induction 
(Figure 9.5A) and steady-state expression. The theoretical fit provided an 
estimate for the fraction of mature lacZ mRNA that is retained at the gene, 
approximately 55%.

At this stage, we can only speculate as to the mechanism of mature mRNA 
retention. It is well documented that multiple features of the bacterial cell 
are modulated by growth conditions, including the spatial organization of 
the nucleoid, RNAPs, and ribosomes,56 as well as the fluidity of the bacterial 
cytoplasm.57 mRNA retention may be a consequence of any of those effects. 
Interestingly, following mRNA kinetics after inhibiting transcription  
initiation using rifampicin revealed a transient accumulation of cytoplas-
mic lacZ mRNA prior to the expected decline in levels (Figure 9.5B). This 
suggests to us that mature mRNA retention depends on active transcription.  
This dependence, in turn, highlights yet again the tight spatiotemporal 
coupling between the different genomic processes of transcription, trans-
lation, mRNA release (and, as we see below, gene replication), a coupling 
which poses a challenge to identifying the mechanism for any single 
phenomenon.

9.8  �A Stochastic Kinetic Model Captures Single-cell 
Statistics

The analysis above used a deterministic model for mRNA kinetics, and 
was applied to the population-averaged experimental values. All stochastic 
effects, and the resulting differences between individual cells, were ignored. 
As in the case of whole-cell RNA measurements discussed earlier, we can next 
formulate a stochastic version of the mRNA model (Figure 9.4B), and use it 
to capture the measured copy-number statistics of nascent mRNA. Specifi-
cally, in this new model, we describe the events of transcription initiation, 
mRNA release, and degradation, as stochastic. In addition, promoter state 
now follows the two-state kinetics introduced earlier.4 Inclusion of this latter 
feature is further supported by the observed statistics of gene “on” and “off” 
durations when using the live MS2 FROS reporter.43 We solved the stochas-
tic model of mRNA kinetics and fitted it to the measured distributions of 
nascent and total lacZ mRNA, during induction43 and at steady-state levels 
of expression (Figure 9.3B above). This fitting procedure yielded estimates 
for the model parameters. In particular, it revealed that the probability of 
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211Using Single-cell RNA Measurements

switching from inactive to active promoter state, kON, is the main feature 
modulated as Plac expression is increased. This result is supported by the 
direct observation of promoter kinetics in live cells,43 and reminiscent of 
similar reports in other organisms.16,36,41,58

9.9  �Sister Gene Copies Can be Highly Correlated in 
Their Transcriptional Activity

Two or more sister copies of a gene are often present in the same cell. Under 
slow-growth conditions, this will only happen during the latter part of the 
cell cycle, after the gene has replicated. At shorter doubling times, the simul-
taneous presence of multiple replication forks results in the presence of two 
or more copies of each gene even in newborn cells. Consequently, a locus 
may be present at anywhere from 1 to 16 copies per cell, depending on the 
genome position, bacterial growth rate, and cell-cycle phase.27

Whereas each copy of the gene is regulated locally, through the binding 
of transcription factors and RNAP, early studies of stochastic gene expression 
evaluated the hypothesis that fluctuations in the cytoplasmic concentration 
of these actors would result in correlations between the activities of indi-
vidual gene copies.59 These correlations were conceptualized using the term 
“extrinsic noise” (to contrast from “intrinsic noise”, which describes the 
uncorrelated fluctuations of individual gene copies),59 and were probed using 
a two-color reporter, comprising two spectrally-distinct fluorescent proteins, 
driven by identical promoters, and placed symmetrically on the left and right 
sides of the chromosome from the origin of replication.1 Measuring the rel-
ative signals of the two proteins provided a window into possible copy–copy 
correlations. However, despite the ingenuity of the engineered system, the 
two reporter genes, unlike true sister copies, do not share the same genomic 
context. It is thus not obvious that the measurements reflect the behavior of 
endogenous sister copies in the replicating chromosome.

Our novel ability to examine transcription at a single gene copy now allows 
us to directly measure the correlation between sister copies. When doing 
so, we observed a dramatic difference in the behavior of Plac between cells 
grown in glucose and glycerol. Focusing on induction conditions where  
the fraction of active gene copies is approximately ½, and examining only those 
cells having two Plac copies, we found that, in glucose, the number of active 
copies per cell closely followed a binomial distribution, as would be expected 
if gene copies are independent in their activity (Figure 9.6). However, this 
was not the case in glycerol. There, most two-copy cells had both Plac copies 
in the same transcriptional state (either active or inactive), with only a small 
minority of cells showing mixed activity of the two copies (Figure 9.6). Con-
sistent with these observations, the measured correlation in activity was low 
in glucose and high in glycerol. A similar trend was seen when comparing the 
measured correlation in nascent lacZ levels, as well as when measuring the 
temporal cross-correlation between Plac copies in live cells.43
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Expanding our measurements beyond these two samples revealed a complex 
dependence on the experimental parameters.43 Some of these dependencies 
indicated that attributing sister-copy correlations to fluctuations in the cyto-
plasmic concentration of an upstream regulator may be misplaced, or at least 
incomplete. For one, we found that a different promoter, phage lambda PR, 
exhibited a similar trend of higher correlation in a slower growth medium. 
The behavior of PR, which in the absence of the lambda repressor is consid-
ered “constitutive”,60 indicates that a gene-specific transcription factor is not 
the regulator whose fluctuations create correlations. This still leaves open 
the possibility of fluctuations in a genome-wide regulator, such as RNAP61 
or guanosine tetraphosphate (ppGpp).62 However, we also found that sister-
copy correlation strongly depended on the genomic locus of the promoter.43 
This appears to go against any cytoplasmic regulator as the single driver of 
correlations, and points, perhaps, to a possible role for temporal changes in 
the local chromosomal environment,63 which would create a common regu-
latory effect on sister copies in two chromosomes.

9.10  �Transcription from a Repressed Promoter is 
Coupled to the Event of Gene Replication

The way in which promoter activity in E. coli depends on the cell cycle remains 
an open question. A priori, cell-cycle progression involves multiple changes 
that could plausibly affect transcription. Some of these changes are, to a 
good approximation, continuous, e.g. cell volume, genome size, the concen-
trations of RNAP and other regulators, whereas others are discrete, e.g. cell 
division and the replication of the gene of interest and the genes encoding 
its upstream regulators. The possible consequences of these cell-cycle events 
for bacterial gene expression have received recent theoretical attention.64–66 
but experimental progress has lagged.

Figure 9.6  ��The correlation in transcriptional activity of two sister gene copies. The 
activity state (ON/OFF) of each Plac copy was measured in cells having 
two copies of the locus. In glucose (top row), the distribution of num-
ber of active copies is consistent with each copy acting independently. 
In glycerol (bottom row), the two sister copies are highly correlated.43
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Of particular interest, the event of gene replication has long been spec-
ulated to affect that gene's transcription.67 Early studies, using popula-
tions of synchronized bacteria, detected an increase in expression (beyond 
the obvious doubling of dosage) at a time corresponding to gene replica-
tion,68,69 although no similar effect has been reported in the years since 
using newer experimental approaches. Multiple mechanisms that could 
couple gene replication and its transcription have been put forward.67 
These include changes in supercoiling of DNA surrounding the replica-
tion fork; movement of the replicated gene to the surface of the nucleoid, 
increasing its accessibility to RNAP; and transient de-repression of the new 
gene copy (or of both old and new copies). Regarding the latter, the idea 
that a tightly-bound transcription factor would only unbind DNA during 
passage of the replication fork is supported by single-cell measurements of 
Plac repression by LacI70 and of the binding kinetics of catalytically inactive 
Cas9 (dCas9).71

To probe the possible coupling between promoter activity and gene rep-
lication, we needed to identify the replication event within the cell cycle. In 
chemically-fixed cells, we first used length sorting as a proxy for cell-cycle 
progression.72 Gene replication was then detected through the increase in 
FROS signal intensity, corresponding to the appearance of replicated, but 
not yet separated, sister copies (see Figure 9.2; note that the increase in the 
number of spots, indicating separation of the cohesive sister copies, is a lag-
ging, and thus inefficient, indicator of replication44). Using this approach, 
we detected gene replication events at the expected approximately twofold 
length intervals,72 and in a manner consistent with the expected dependence 
on distance from the origin of replication.43

We next proceeded to examine how the degree of active transcription, as 
indicated by the amount of nascent mRNA, changes during the cell cycle. 
The null hypothesis would be that the activity of each gene copy is constant 
throughout the cell cycle, and, therefore, that the level of nascent mRNA 
per cell closely follows gene dosage. Measuring the activity of a PR reporter  
(in cells lacking the transcription factors to repress it), revealed just that: A 
doubling in the amount of nascent RNA is observed at the cell-cycle phase 
corresponding to gene replication (Figure 9.7A).

Very different behavior was revealed in Plac, under conditions where the  
promoter is strongly repressed. Nascent mRNA levels increased transiently 
around the estimated time of gene replication (Figure 9.7A). This was the 
case for both the endogenous promoter and for reporters placed at other 
genomic loci.43 A similar pulse of activity could be detected near the event of 
gene replication in live cells (Figure 9.7B). In fact, even in wild-type, geneti-
cally unmodified cells (strain MG1655), a higher propensity for transcription 
was observed in cells whose length corresponded to the cell-cycle phase of 
gene replication.43

Thus, our data provides evidence for an instance in which transcription 
from a repressed promoter is coupled to the replication of the gene. The 
data, however, does not offer an obvious means to distinguish between the 
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proposed mechanisms for this coupling. Our current resolution does not 
allow us to determine the relative timing between replication and the increase 
in transcription, an observable that could yield useful information regarding 
the mechanistic questions posed. In terms of the magnitude of the effect, 
however, the phenomenology is quite clear, with the relative amplitude of 
the replication-induced pulse monotonically decreasing as gene expression 
level increases, until the effect becomes undetectable, as in highly expressed 
Plac and PR.43

9.11  �Summary
In this chapter, we described our recent progress in using single-cell RNA 
measurements, interpreted using stochastic models of the underlying kinetics, 
to elucidate the spatiotemporal life history of mRNA in E. coli. As is evident 
from the discussion above, fundamental questions regarding those dynam-
ics remain open.

In the temporal dimension, it is still unclear what drives the stochastic 
kinetics of mRNA production from the promoter. A large body of data is con-
sistent with the picture of two-state kinetics, but the molecular underpinning 
of the active and inactive states is still debated.13,28,29 Improvements in the 
temporal resolution of live-cell RNA measurements could help illuminate this 
question, and may reveal more elaborate kinetic schemes.73 Importantly, it is 
also unclear how much of the observed population heterogeneity in mRNA 

Figure 9.7  ��Promoter activity is coupled to gene replication. (A) In length-sorted 
fixed cells, nascent RNA from the PR promoter (top) exhibits the expected 
doubling at the cell-cycle phase corresponding to gene replication. 
In contrast, a repressed copy of Plac exhibits a pulse of transcription 
around gene replication. (B) In time-lapse movies, transcription from 
a repressed Plac copy is observed close to the time of gene replication.43
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levels actually reflects the stochastic aspects of transcription, as opposed to 
other drivers of cell-to-cell differences. As described earlier, we demonstrated 
two such drivers, namely the coupling of transcription to gene replication 
and the correlation between sister copies. In the absence of proper analysis, 
the cellular heterogeneity in mRNA numbers that stems from these effects 
may be erroneously attributed to stochastic transcription.21

Spatially, the life history of mRNA is just as mysterious, part of our greater 
ignorance of how the flow of genetic information in E. coli is organized within 
the cell.74 For example, beyond the partitioning of the cell between nucleoid 
and cytoplasm, is the cytoplasm itself well mixed, or do key gene-expression 
players localize to improve function? RNAP “transcription factories”, local-
ized to ribosomal RNA operons, have been well-documented,75,76 but their 
functional significance is still unclear.77 The lac repressor, too, has been 
reported to exhibit a heterogeneous spatial distribution in the cell.78 Con-
sidering the exciting recent observations of RNAP and transcription-factor 
“hubs” in eukaryotes,79–81 this promises to be a fruitful direction for future 
research. Subsequent to transcription, mRNA translation has been shown to be 
modulated by the different spatial preferences of DNA, RNAP, and ribosomes 
in the cell,56,82,83 and would plausibly be affected by the partial retention of 
mature mRNA discussed above. Finally, mRNA degradation has been sug-
gested to take place mostly at the cell membrane,32 but direct evidence for 
this is still lacking. The spatial dimension of the Central Dogma thus still 
needs to be experimentally elucidated. The theoretical modeling of these 
aspects, too, is only at an early stage.84,85
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